Groundwater
Groundwater occupies the void space in a geological strata. It is one element in the continuous process of moisture circulation on Earth, termed the hydrologic cycle.
Almost all groundwater originates as surface water. Some portion of rain hitting the earth runs off into streams and lakes, and another portion soaks into the soil, where it is available for use by plants and subject to evaporation back into the atmosphere. The third portion soaks below the root zone and continues moving downward until it enters the groundwater. Precipitation is the major source of groundwater. Other sources include the movement of water from lakes or streams and contributions from such activities as excess irrigation and seepage from canals. Water has also been purposely applied to increase the available supply of groundwater. Water-bearing formations called aquifers act as reservoirs for storage and conduits for transmission back to the surface.
The occurrence of groundwater is usually discussed by distinguishing between a zone of saturation and a zone of aeration. In the zone of saturation, the pores are entirely filled with water, while the zone of aeration has pores that are at least partially filled by air. Suspended water does occur in this zone. This water is called vadose, and the zone of aeration is also known as the vadose zone. In the zone of aeration, water moves downward due to gravity, but in the zone of saturation it moves in a direction determined by the relative heights of water at different locations.
Water that occurs in the zone of saturation is termed groundwater. This zone can be thought of as a natural storage area or reservoir whose capacity is the total volume of the pores of openings in rocks.
An important exception to the distinction between these zones is the presence of ancient sea water in some sedimentary formations. The pore spaces of materials that have accumulated on an ocean floor, which has then been raised through later geological processes, can sometimes contain salt water. This is called connate water.
Formations or strata within the saturated zone from which water can be obtained are called aquifers. Aquifers must yield water through wells or springs at a rate that can serve as a practical source of water supply. To be considered an aquifer the geological formation must contain pores or open spaces filled with water, and the openings must be large enough to permit water to move through them at a measurable rate. Both the size of pores and the total pore volume depends on the type of material. Individual pores in fine-grained materials such as clay, for example, can be extremely small, but the total volume is large. Conversely, in coarse material such as sand, individual pores may be quite large but total volume is less. The rate of movement for fine-grained materials, such as clay, will be slow due to the small pore size, and it may not yield sufficient water to wells to be considered an aquifer. However, the sand is considered an aquifer, even though they yield a smaller volume of water, because they will yield water to a well.
The water table is not stationary but moves up or down depending on surface conditions such as excess precipitation, drought, or heavy use. Formations where the top of the saturated zone or water table define the upper limit of the aquifer are called unconfined aquifers. The hydraulic pressure at any level with an aquifer is equal to the depth from the water table, and there is a type known as a water-table aquifer, where a well drilled produces a static water level which stands at the same level as the water table.
A local zone of saturation occurring in an aerated zone separated from the main water table is called a perched water table. These most often occur when there is an impervious strata or significant particle-size change in the zone of aeration, which causes the water to accumulate. A confined aquifer is found between impermeable layers. Because of the confining upper layer, the water in the aquifer exists within the pores at pressures greater than the atmosphere. This is termed an artesian condition and gives rise to an artesian well.
Groundwater can be pumped from any aquifer that can be reached by modern well-drilling apparatus. Once a well is constructed, hydraulic pumps pull the water up to the surface through pipes. As water from the aquifer is pulled up to the surface, water moves through the aquifer towards the well. Because water is usually pumped out of an aquifer more quickly than new water can flow to replace what has been withdrawn, the level of the aquifer surrounding the well drops, and a cone of depression is formed in the immediate area around the well.
Groundwater can be polluted by the spilling or dumping of contaminants. As surface water percolates downward, contaminants can be carried into the aquifer. The most prevalent sources of contamination are waste disposal, the storage, transportation and handling of commercial materials, mining operations, and nonpoint sources such as agricultural activities. Two other forms of groundwater pollution are the result of pumping too much water too quickly, so that the rate of water withdrawal from the aquifer exceeds the rate of aquifer recharge. In coastal areas, salty water may migrate towards the well, replacing the fresh water that has been withdrawn. This is called salt water intrusion. Eventually, the well will begin pulling this salt water to the surface; once this happens, the well will have to be abandoned. A similar phenomenon, called connate ascension, occurs when a freshwater aquifer overlies a layer of sedimentary rocks containing connate water. In some cases, overpumping will cause the connate water to migrate out of the sedimentary rocks and into the freshwater aquifer. This results in a brackish, briney contamination similar to the effects of a salt water intrusion. Unlike salt water intrusion, however, connate ascension is not particularly associated with coastal areas.
Groundwater has always been an important resource, and it will become more so in the future as the need for good quality water increases due to urbanization and agricultural production. It has recently been estimated that 50% of the drinking water in the United States comes from groundwater; 75% of the nation's cities obtain all or part of their supplies from groundwater, and rural areas are 95% dependent upon it. For these reasons every precaution should be taken to protect groundwater purity. Once contaminated, groundwater is difficult, expensive, and sometimes impossible to clean up.
See also Water pollution.
Resources
Books
Collins, A.G., and A.I. Johnson, eds. Ground-Water Contamination: Field Methods. Philadelphia: American Society for Testing and Materials, 1988.
Davis, S.N., and R.J.M. DeWiest. Hydrogeology. New York: Wiley, 1966.
Fairchild, D.M. Ground Water Quality and Agricultural Practices. Chelsea, MI: Lewis, 1988.
Freeze, R.A., and J.A. Cherry. Ground Water. Englewood Cliffs, NJ: Prentice-Hall, 1979.
Ground Water and Wells. St. Paul: Edward E. Johnson, 1966.
James L. Anderson
Additional topics
Science EncyclopediaScience & Philosophy: Glucagon to Habitat