4 minute read

Sand



Sand is any material composed of loose, stony grains between 1/16 mm and 2 mm in diameter. Larger particles are categorized as gravel, smaller particles are categorized as silt or clay. Sands are usually created by the breakdown of rocks, and are transported by wind and water, before depositing to form soils, beaches, dunes, and underwater fans or deltas. Deposits of sand are often cemented together over time to form sandstones.



Pure quartz sands are mined to make glass and the extremely pure silicon employed in microchips and other electronic components.

The most common sand-forming process is weathering, especially of granite. Granite consists of distinct crystals of quartz, feldspar, and other minerals. When exposed to water, some of these minerals (e.g., feldspar) decay chemically faster than others (especially quartz), allowing the granite to crumble into fragments. Sand formed by weathering is termed epiclastic.

Where fragmentation is rapid, granite crumbles before its feldspar has fully decayed and the resulting sand contains more feldspar. If fragmentation is slow, the resulting sand contains less feldspar. Fragmentation of rock is enhanced by exposure to fast-running water, so steep mountains are often source areas for feldspar-rich sands and gentler terrains are often source areas for feldspar-poor sands. Epiclastic sands and the sandstones formed from them thus record information about the environments that produce them. A sedimentologist can deduce the existence of whole mountain ranges long ago eroded, and of mountain-building episodes that occurred millions of years ago from sandstones rich in relatively unstable minerals like feldspar.

The behavior of sand carried by flowing water can inscribe even more detailed information about the environment in sand deposits. When water is flowing rapidly over a horizontal surface, any sudden vertical drop in that surface splits the current into two layers, (1) an upper layer that continues to flow downstream and (2) a slower backflow that curls under in the lee of the dropoff. Suspended sand tends to settle out in the back-flow zone, building a slope called a "slip face" that tilts downhill from the dropoff. The backflow zone adds continually to the slip face, growing it downstream, and as the slip face grows downstream its top edge continues to create a backflow zone. The result is the deposition of a lengthening bed of sand. Typically, periodic avalanches of large grains down the slip face (or other processes) coat it with thin layers of distinctive material. These closely-spaced laminations are called "cross-bedding" because they angle across the main bed. Cross-bedding in sandstone records the direction of the current that deposited the bed, enabling geologists to map currents that flowed millions of years ago (paleocurrents).

Evidence of grain size, bed thickness, and crossbedding angle, allows geologists to determine how deep and fast a paleocurrent was, and thus how steep the land was over which it flowed.

Ripples and dunes—probably the most familiar forms created by wind- or waterborne sand—involve similar processes. However, ripples and dunes are more typical of flow systems to which little or no sand is being added. The downstream slip faces of ripples and dunes are built from grains plucked from their upstream sides, so these structures can migrate without growing. When water or wind entering the system (e.g., water descending rapidly from a mountainous region) imports large quantities of sand, the result is net deposition rather than the mere migration of sandforms.

Grain shape, too, records history. All epiclastic grains of sand start out angular and become more rounded as they are polished by abrasion during transport by wind or water. Quartz grains, however, resist wear. One trip down a river is not enough to thoroughly round an angular grain of quartz; even a long sojourn on a beach, where grains are repeatedly tumbled by waves, does not suffice. The well-rounded state of many quartz sands can be accounted for only by crustal recycling. Quartz grains can survive many cycles of erosion, burial, cementation into sandstone, uplift, and re-erosion. Recycling time is on the order of 200 million years, so a quartz grain first weathered from granite 2.4 billion years ago may have gone through 10 or 12 cycles of burial and re-erosion to reach its present day state. An individual quartz grain's degree of roundness is thus an index of its antiquity. Feldspar grains can also survive recycling, but not as well, so sand that has been recycled a few times consists mostly of quartz.

Sand can be formed not only by weathering but by explosive volcanism, the breaking up of shells by waves, the cementing into pellets of finer-grained materials (pelletization), and the precipitation of dissolved chemicals (e.g., calcium carbonate) from solution.

Resources

Books

Hamblin, W.K., and Christiansen, E.H. Earth's Dynamic Systems. 9th ed. Upper Saddle River: Prentice Hall, 2001.

Hancock P.L. and Skinner B.J., eds. The Oxford Companion to the Earth. New York: Oxford University Press, 2000.

Keller, E.A. Introduction to Environmental Geology 2nd ed. Upper Saddle River: Prentice Hall, 2002.

Press, F. and R. Siever. Understanding Earth. 3rd ed. New York: W.H Freeman and Company, 2001.


Larry Gilman

Additional topics

Science EncyclopediaScience & Philosophy: Revaluation of values: to Sarin Gas - History And Global Production Of Sarin