# Aerodynamics

## Skin Friction And Pressure Drag, Airfoil, Supersonic FlightBasic air flow principles

Aerodynamics is the science of air flow over airplanes, cars, buildings, and other objects. Aerodynamic principles are used to find the best ways in which airplanes can get lift, reduce drag, and remain stable by controlling the shape and size of the wing, the **angle** at which it is positioned with respect to the airstream, and the flight speed. The flight characteristics change at higher altitudes as the surrounding air becomes colder and thinner. The behavior of the air flow also changes dramatically at flight speeds close to, and beyond, the speed of sound. The explosion in computational capability has made it possible to understand and exploit the concepts of aerodynamics and to design improved wings for airplanes. Increasingly sophisticated wind tunnels are also available to test new models.

*Air properties that influence flow*

Air flow is governed by the principles of **fluid dynamics** that deal with the **motion** of liquids and gases in and around solid surfaces. The **viscosity**, **density**, compressibility, and **temperature** of the air determine how the air will flow around a building or a plane. The viscosity of a fluid is its resistance to flow. Even though air is 55 times less viscous than **water**, viscosity is important near a solid surface since air, like all other fluids, tends to stick to the surface and slow down the flow. A fluid is compressible if its density can be increased by squeezing it into a smaller **volume**. At flow speeds less than 220 MPH (354 km/h), a third the speed of sound, we can assume that air is incompressible for all practical purposes. At speeds closer to that of sound (660 MPH [1,622 km/h]), however, the variation in the density of the air must be taken into account. The effects of temperature change also become important at these speeds. A regular commercial airplane, after landing, will feel cool to the **touch**. The Concorde jet, which flew at twice the speed of sound, felt hotter than boiling water.

*Laminar and turbulent flow*

Flow patterns of the air may be laminar or turbulent. In laminar or streamlined flow, air, at any point in the flow, moves with the same speed in the same direction at all times so that the flow appears to be smooth and regular. The smoke then changes to turbulent flow, which is cloudy and irregular, with the air continually changing speed and direction.

Laminar flow, without viscosity, is governed by **Bernoulli's principle**: the sum of the static and dynamic pressures in a fluid remains the same. A fluid at rest in a pipe exerts static **pressure** on the walls. If the fluid now starts moving, some of the static pressure is converted to dynamic pressure, which is proportional to the square of the speed of the fluid. The faster a fluid moves, the greater its dynamic pressure and the smaller the static pressure it exerts on the sides.

Bernoulli's principle works very well far from the surface. Near the surface, however, the effects of viscosity must be considered since the air tends to stick to the surface, slowing down the flow nearby. Thus, a boundary layer of slow-moving air is formed on the surface of an airplane or **automobile**. This boundary layer is laminar at the beginning of the flow, but it gets thicker as the air moves along the surface and becomes turbulent after a point.

*Numbers used to characterize flow*

Air flow is determined by many factors, all of which work together in complicated ways to influence flow. Very often, the effects of factors such as viscosity, speed, and **turbulence** cannot be separated. Engineers have found smart ways to get around the difficulty of treating such complex situations. They have defined some characteristic numbers, each of which tells us something useful about the nature of the flow by taking several different factors into account.

One such number is the Reynolds number, which is greater for faster flows and denser fluids and smaller for more viscous fluids. The Reynolds number is also higher for flow around larger objects. Flows at lower Reynolds numbers tend to be slow, viscous, and laminar. As the Reynolds number increases, there is a transition from laminar to turbulent flow. The Reynolds number is a useful similarity parameter. This means that flows in completely different situations will behave in the same way as long as the Reynolds number and the shape of the solid surface are the same. If the Reynolds number is kept the same, water moving around a small stationary airplane model will create exactly the same flow patterns as a full-scale airplane of the same shape, flying through the air. This principle makes it possible to test airplane and automobile designs using small-scale models in wind tunnels.

At speeds greater than 220 MPH (354 km/h), the compressibility of air cannot be ignored. At these speeds, two different flows may not be equivalent even if they have the same Reynolds number. Another similarity parameter, the **Mach number**, is needed to make them similar. The Mach number of an airplane is its flight speed divided by the speed of sound at the same altitude and temperature. This means that a plane flying at the speed of sound has a Mach number of one.

The drag **coefficient** and the lift coefficient are two numbers that are used to compare the forces in different flow situations. Aerodynamic drag is the **force** that opposes the motion of a car or an airplane. Lift is the upward force that keeps an airplane afloat against gravity. The drag or lift coefficient is defined as the drag or lift force divided by the dynamic pressure, and also by the area over which the force acts. Two objects with similar drag or lift coefficients experience comparable forces, even when the actual values of the drag or lift force, dynamic pressure, area, and shape are different in the two cases.

*Lift*

The stagnation point is the point at which the stream of air moving toward the wing divides into two streams, one flowing above and the other flowing below the wing. Air flows faster above a wing with greater camber since the same amount of air has to flow through a narrower space. According to Bernoulli's principle, the faster flowing air exerts less pressure on the top surface, so that the pressure on the lower surface is higher, and there is a net upward force on the wing, creating lift. The camber is varied, using flaps and slats on the wing in order to achieve different degrees of lift during take-off, cruise, and landing.

Since the air flows at different speeds above and below the wing, a large jump in speed will tend to arise when the two flows meet at the trailing edge, leading to a rearward stagnation point on top of the wing. Wilhelm Kutta (1867-1944) realized that a circulation of air around the wing would ensure smooth flow at the trailing edge. According to the Kutta condition, the strength of the circulation, or the speed of the air around the wing, is exactly as much as is needed to keep the flow smooth at the trailing edge.

Increasing the angle of attack moves the stagnation point down from the leading edge along the lower surface so that the effective area of the upper surface is increased. This results in a higher lift force on the wing. If the angle is increased too much, however, the boundary layer is detached from the surface, causing a sudden loss of lift. This is known as a stall and the angle at which this occurs for an airfoil of a particular shape, is known as the stall angle.

*Induced drag*

The airfoil is a two-dimensional section of the wing. The length of the wing in the third dimension, out to the side, is known as the span of the wing. At the wing tip at the end of the span, the high-pressure flow below the wing meets the low-pressure flow above the wing, causing air to move up and around in wing-tip vortices. These vortices are shed as the plane moves forward, creating a downward force or downwash behind it. The downwash makes the airstream tilt downward and the resulting lift force tilt backward so that a net backward force or drag is created on the wing. This is known as induced drag or drag due to lift. About a third of the drag on a modern airliner is induced drag.

*Stability and control*

In addition to lift and drag, the stability and control of an **aircraft** in all three dimensions is important since an aircraft, unlike a car, is completely surrounded by air. Various control devices on the tail and wing are used to achieve this. Ailerons, for instance, control rolling motion by increasing lift on one wing and decreasing lift on the other.

## Additional topics

- Aerodynamics - Skin Friction And Pressure Drag
- Aerodynamics - Airfoil
- Aerodynamics - Supersonic Flight
- Other Free Encyclopedias

Science EncyclopediaScience & Philosophy: *Adrenoceptor (adrenoreceptor; adrenergic receptor)* to *Ambient*