3 minute read


Wireless Telephone Systems

In wireless communication the information is superimposed on a carrier radio signal, which is sent through the air to a receiving location, where the original information is detected and isolated. Cordless, mobile, and cellular telephones perform all functions of the conventional telephone but partially use a radio link instead of wires.

The cordless telephone uses low-power radio transmissions only between the portable handset and its base. The telephone base is wired in a regular way to the telephone line completing the local loop to the central office. An internal antenna in the handset receives the transmission from the base unit over a range from 49 to 948.5 ft (15-300 m). The handset is powered by a battery which is automatically recharged when placed in a receptacle in the base unit. When the user dials the number for the outgoing calls, the dial tones are transmitted to the base unit which sends the tones to the regular telephone line.

The mobile telephone has no direct hardware connection with the conventional telephone line. It uses a high-power transmitter and an elevated antenna to establish a wireless link with the base station antenna serving a circular area of up to 31 mi (50 km) in radius. The base station receives and transmits on several different frequencies simultaneously, providing clear reliable communications. The control terminal of the base station directs telephone calls to and from the conventional telephone system, just like calls that are carried out entirely over wires. When the user in his moving vehicle lifts the handset of the mobile telephone to place a call, the control terminal automatically selects an available channel. If a channel is found, the user hears the normal dial tone and proceeds as usual.

The cellular telephone concept, first developed and implemented in the United States in the late 1970s, is a method of providing high quality telephone service to subscribers when they move beyond the boundaries of the home area. This concept suggests dividing a service area into a number of small cells (see Figure 3). Each cell is served by a control terminal, which, like a local central office, can switch, transmit, and receive calls to/from any mobile telephone located in the cell. Each cell transmitter and receiver operates on a designated channel.

There are two essential features of the cellular concept: frequency reuse and cell splitting. Frequency reuse means that the same channel may be used for conversations in cells located far apart enough to keep interference low. This is possible, because each cell uses relatively low-power transmitter covering only limited area, so cells located sufficiently far from each other may use the same frequency. Cell splitting is based on the notion that cell sizes do not have to be fixed. A system with a relatively small number of subscribers uses large cells, which can be divided into smaller ones as demand grows.

The cells are interconnected and controlled by a central Mobile Telecommunications Switching Office (MTSO), which connects the system to the conventional telephone network and keeps track of all call information for billing purposes. During the call, the terminal at the serving cell site examines the signal strength once every few seconds. If the signal level becomes too low, the MTSO looks for a closest to the active user cell site to handle the call. The actual "handoff" from one cell to the next occurs without getting noticed by a user. Decision to hand off is made by the computer, based on the location analysis, the quality of the signal and potential interference.

The convenience and efficiency of wireless telephone communication is the reason for the impressive growth of this service. Recent market data indicate that there are currently more than 100 million cellular subscribers in the United States, comparing with approximately 4.4 million in 1990, and 90,000 subscribers in 1984. Currently, cellular telephone service is available mainly in urban areas. The future expansion of cellular network on a global scale will be based on employing low altitude low weight satellites.

Additional topics

Science EncyclopediaScience & Philosophy: Swim bladder (air bladder) to ThalliumTelephone - Invention And Historical Development Of The Telephone, Telephone Set, Telephone Network, Quality Of Telephone Communication