Acoustics
Applications
The applications of acoustical devices are far too numerous to describe; one only has to look around our homes to see some of them: telephones, radios and television sets, compact disc players and tape recorders; even clocks that "speak" the time. Probably one of the most important from the human point of view is the hearing aid, a miniature microphone-amplifier-loudspeaker that is designed to enhance whatever range of frequencies a person finds difficulty hearing.
However, one of the first large-scale industrial uses of sound propagation was by the military in World War I, in the detection of enemy submarines by means of sonar (for sound navigation and ranging). This was further developed during the period between then and World War II, and since then. The ship-hunting submarine has a sound source and receiver projecting from the ship's hull that can be used for either listening or in an echo-ranging mode; the source and receiver are directional, so that they can send and receive an acoustic signal from only a small range of directions at one time. In the listening mode of operation, the operator tries to determine what are the sources of any noise that might be heard: the regular beat of an engine heard underwater can tell that an enemy might be in the vicinity. In the echo-ranging mode, a series of short bursts of sound is sent out, and the time for the echo to return is noted; that time interval multiplied by the speed of sound in water indicates (twice) the distance to the reflecting object. Since the sound source is directional, the direction in which the object lies is also known. This is now such a well developed method of finding underwater objects that commercial versions are available for fishermen to hunt for schools of fish.
Ultrasonic sources, utilizing pulses of frequencies in the many millions of cycles per second (and higher), are now used for inspecting metals for flaws. The small wavelengths make the pulses liable to reflection from any imperfections in a piece of metal. Castings may have internal cracks which will weaken the structure; welds may be imperfect, possibly leading to failure of a metal-to-metal joint; metal fatigue may produce cracks in areas impossible to inspect by eye. The use of ultrasonic inspection techniques is increasingly important for failure prevention in bridges, aircraft, and pipelines, to name just a few.
The use of ultrasonics in medicine is also of growing importance. The detection of kidney stones or gallstones is routine, as is the imaging of fetuses to detect suspected birth defects, cardiac imaging, blood flow measurements, and so forth.
Thus, the field of acoustics covers a vast array of different areas of use, and they are constantly expanding. Acoustics in the communications industry, in various phases of the construction industries, in oil field exploration, in medicine, in the military, and in the entertainment industry, all attest to the growth of this field and to its continuing importance in the future.
Resources
Books
Deutsch, Diana. Ear and Brain: How We Make Sense of Sounds New York: Copernicus Books, 2003.
Kinsler, Lawrence E., et. al. Fundamentals of Acoustics, 4th ed. New York: John Wiley & Sons, 1999.
Organizations
The Acoustical Society of America. 2 Huntington Quadrangle, Suite 1NO1, Melville, NY 11747–4502 Phone: (516) 576–2360. <http://asa.aip.org/index.html>
Other
The University of New South Wales. "Music Acoustics" [cited March 10, 2003]. <http://www.phys.unsw.edu.au/music/>.
David Mintzer
Additional topics
Science EncyclopediaScience & Philosophy: 1,2-dibromoethane to AdrenergicAcoustics - Vibrations Of A String, Vibrations Of An Air Column, Sound Production In General, Transmission Of Sound - Production of sound