1 minute read


Bioremediation Of Soils Contaminated With Toxins

Many of the chemicals commonly used in industry or agriculture, or produced as by-products of industrial processes are persistent poisons, such as DDT and other organochlorines that are dangerous to humans and wildlife and that do not readily breakdown under natural processes. In most cases, contaminated soils would be burned and then hauled away for storage as hazardous waste. However, new bioremediation techniques that use bacteria to break down the toxins are being tested around the world. These techniques involve many varieties of bacteria, working in a carefully orchestrated sequence. By controlling environmental conditions around the contaminated site—for example, by enclosing the site in a large tent-like construction and controlling heat and moisture inputs as well as oxygen levels—clean-up experts believe they can encourage the proper series of bacterial relationships required to break down the contaminates. The bacteria used in such projects are not genetically altered or specially bred strains. If successful, this approach to the bioremediation of contaminated sites will offer a cheaper, less environmentally damaging alternative to traditional clean-up technologies.



Freedman, B. Environmental Ecology. 2nd ed. San Diego: Academic Press, 1994.


Frederick, R.J., and M. Egan. "Environmentally Compatible Applications of Biotechnology." BioScience, 44 (1994): 529-535.

Bill Freedman


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


—Increasing the abundance of microorganisms that are specifically effective at bioremediation.


—Optimizing environmental conditions for the actions of microorganisms important in bioremediation, usually by fertilizing or aerating.

Additional topics

Science EncyclopediaScience & Philosophy: Bilateral symmetry to Boolean algebraBioremediation - Bioremediation Of Spilled Hydrocarbons, Bioremediation Of Metal Pollution, Bioremediation Of Acidification, Bioremediation Of Sewage