4 minute read

History of Science

General Works, Preclassical Antiquity, Middle Ages, Scientific Revolution, Biological Sciences, Feminist History Of Science



The history of science as an academic discipline grew in the post-1945 era along with the development of higher education and the expansion of science and technology. In the United States, Vannevar Bush's seminal 1945 article, "Science, the Endless Frontier: A Report to the President," called for a government-supported national research foundation. Bush's influence led to the creation of the National Science Foundation in 1950 and inaugurated an era in which science was a form of "politics by other means" for waging the Cold War. Science came to be combined with technology in ways that often made the two indistinguishable. The program to land men on the moon, the development of intercontinental ballistic missiles with nuclear warheads, the construction of supercomputers, and the war on cancer are just a few examples of technoscience during this era. As the role of science and scientists in society increased, so did the need to understand science and scientists in historical terms.



In the 1970s and 1980s, many universities established history of science programs or related science and technology studies programs, greatly increasing the number of professional scholars in the field. The annual edition of the Isis Current Bibliography is a good indicator of growth and decline in the history of science. Isis is the academic journal of the History of Science Society, the discipline's largest professional organization. According to the society's preface to the 2000 edition, "The Isis Current Bibliography is compiled by the systematic search of approximately 600 journals." Throughout the 1970s, the Isis Current Bibliography typically listed fewer than 3,000 entries comprising books and journal articles. In 1983 the number of entries rose above 3,000, and in 1993 it first surpassed 4,000. After 1999, scholarship in the history of science seemed to decline rapidly in quantitative terms, and since 2000 the number of entries has hovered below 3,000.

Throughout most of the twentieth century, there were two generally opposed schools of thought in the history of science: internalist and externalist. Internalists believe that the history of science should be explained only through the growth and development of science as rational knowledge and methods. For the internalist, social or cultural factors merely hinder or accelerate this growth, but are not intrinsically part of science. Externalists believe that science is a part of culture and society. For the externalist, the explanation of scientific change necessarily must include non-scientific factors. Boris Hessen's book The Social and Economic Roots of Newton's Principia (1931) helped establish the boundaries of the externalist camp with its emphasis on the social, economic, and political forces that shaped Newton's science. Alexander Koyré's work Études Galiléennes (1939; Galileo studies) helped establish the boundaries of the internalist camp with its emphasis on intellectual content, growth of knowledge, metaphysical assumptions, and rational nature of Galileo's science. In principle this debate between internalist and externalist explanations in the history of science largely ended following the publication of Thomas Kuhn's The Structure of Scientific Revolutions in 1962. Though Kuhn had begun historical work as a disciple of Koyré, Kuhn's book emphasized the role of social factors in revolutionary periods when one paradigm replaces another. Subsequently, though non-historians often fall into the internalism versus externalism debate, historians tend to embrace both explanations as complementary ways of understanding scientific change through time. From the internalist versus externalist debates, the sociology of science emerged as a discipline closely allied to the history of science. Because the sociology of science may use a theoretical method that distinguishes it from history qua history, it is sometimes treated as a special subcategory of the history of science.

Most historians of science focus their work around some combination of chronological period, subject category, and cultural area. Chronological periods include classical antiquity (chiefly Greco-Roman to c. 500 C.E.), the Middle Ages (Latin culture and Europe in general from 500 to c. 1450), the Renaissance and Reformation (1450–1600), and century-by-century from the seventeenth to the twentieth. Subject categories include mathematics, earth sciences, biological sciences, social sciences, and medicine and medical sciences. These are further broken down into subcategories—for example, the physical sciences consist of astronomy, physics, and chemistry. Some historians use a biographical focus within the subject approach. Cultural areas include Islamic and related cultures (including Israel, Iran, and the Near East in general; chiefly from c. 500 to c. 1600), India (to c. 1600), and the Far East (to c. 1600). Presumably, global communication and unification in the sciences make these cultural categories unnecessary after 1600. The work of Joseph Needham seems to belie this point, and the history of modern science in non-Western cultures remains a fertile and largely unexplored academic terrain.

The following categories are by no means an exhaustive survey of new themes in the history of science. Rather, they are an effort to identify selected key developments—some in traditional areas such as the scientific revolution, and others in new areas such as feminist history of science—that will help orient scholars who are new to the discipline. Also, in part because of space limitations, history of technology and history of the social sciences are excluded, and only the history of the natural sciences is covered here.

Additional topics

Science EncyclopediaScience & Philosophy: Jean-Paul Sartre Biography to Seminiferous tubules