5 minute read

Natural History

Collections And The Growth Of Natural History, Maturity Of Natural History, Modern Synthesis And Contemporary Natural History



Natural history, the study of natural objects, has been a feature of all literate civilizations. In the Western tradition, starting with Aristotle, natural history has engaged scholars and has been an important feature of Western literature. The perspective with which writers have approached natural objects, and the aspects of interest to them, have varied as much as their cultures. Natural history has been written about as a form of philosophy, as entertaining literature, and as a form of didactic lesson. Aristotle, Pliny, Albertus Magnus, and Ulisse Aldrovandi's "natural histories" in many ways have little in common other than the objects about which they wrote. In addition, non-Western civilizations have rich literatures that go back centuries, on plants, animals, and minerals. And, anthropologists make the claim that numerous non-literate peoples have developed sophisticated conceptions of the natural world and its objects.



As a scientific discipline, however, natural history has a more restricted domain. When the term natural history is used today, it is most often in reference to the subject as it emerged in the mid-eighteenth century. In this modern form, natural history is the systematic study of natural objects (animals, plants, minerals)—that is, naming, describing, classifying, and searching for their overall order. As such, it has been at the heart of the life sciences. The modern scientific discipline of natural history that emerged in the middle of the eighteenth century was closely tied to the careers of two individuals: Carolus Linnaeus and Georges Louis Leclerc, comte de Buffon.

Naturalists, particularly those interested in plants, faced a serious problem at the time. An enormous quantity of material had come into Europe from areas recently explored by colonial powers. Naming and classifying the new plants presented a challenge because they did not fit easily into previously established systems. The Swedish naturalist Carlus Linnaeus (1707–1778) created a classification system for plants that placed them into twenty-four classes according to their number of stamens (male part) and their relative positions. The classes, in turn, were broken down into sixty-five orders primarily on the basis of the number and position of the pistils (female part). He used other characteristics to break the orders into genera and species. Overall, the system was simple, easy to remember, and easy to use.

Of equal importance, Linnaeus also provided a set of rules for naming plants. Before his reform of nomenclature, the scientific names of plants consisted of two parts, a word or set of words that identified a group of plants, and then a string of words that distinguished the characteristics of the plant from other plants. As a result, the scientific name was awkward, and because various writers had used different characteristics to distinguish different plants, considerable confusion existed. Linnaeus proposed a simple reform that made plant names like human names, a single name common to all the species in a genus, and a second specific name that distinguished the species from others in the genus. He used this binomial nomenclature in his Species plantarum (1753; The species of plants) and recorded all the known species of plants in it. Later he extended his approach to animals. His reform quickly caught on and is the basis for contemporary nomenclature.

Although Linnaeus's main goal was the naming and classifying of natural products, he described them as part of a divine order, a balanced and harmonious system. In his mind, every plant and animal filled a particular place in a balanced order and functioned to help maintain it. Carnivores, for example, daily destroyed animals that if not checked would reproduce at a rate that would outstrip their source of food in short order.

While Linnaeus labored in Sweden, to the south, Georges Louis Leclerc, comte de Buffon (1707–1788), worked on a more secular vision of nature, and in a somewhat different manner. Louis XV of France had appointed Buffon as director of his royal garden in Paris. The Jardin du Roi was an institution that provided public lectures in natural history, cultivated a large public garden, and housed the royal collection of natural history objects. Buffon had a brilliant career there: he expanded the physical space to double its former size, increased the collections, and helped make it into the foremost institution for the study of the living world. More important, Buffon set out to prepare a catalog of the royal natural history collection, a standard practice in most large collections. But instead of planning a mere annotated list of the curiosities and rare objects in the collection, Buffon envisioned a much grander project: a complete natural history of all living beings and minerals. Over a period of almost fifty years he published thirty-six quarto volumes containing a theory of the earth, and natural histories of human beings, minerals, quadrupeds, and birds. (The rest was completed by a team of specialists in the two decades after his death.)

Buffon's Histoire naturelle, générale et particulière (1749–1789; Natural history, general and particular) comprises an encyclopedia that reflects the goals of the French Enlightenment. In his introductory essays, he elaborated a general philosophy that stressed the importance of observation and claimed that through empirical investigation naturalists might uncover the order in nature. He had little use for the work of people like Linnaeus who devoted their attention to naming and arranging specimens. In contrast, Buffon envisioned natural history to be a general survey of the natural world and an attempt to summarize all available knowledge about it. Also unlike Linnaeus, Buffon did not conceive of natural history as a hand-maiden to Christianity, but rather for him nature is a creative natural power responsible for the harmony, balance, and fullness of life. Natural history should be the portrait of nature. Like the physical world, so well described by the Newtonian physical scientists of his day, the living world follows natural laws that investigation would reveal. Buffon's secular vision provided an attractive alternative to Genesis and explains the importance of his reputation in the French Enlightenment.

1782 drawing of nutmeg by botanist Elizabeth Blackwell. In the eighteenth century, Swedish naturalist Carolus Linnaeus began classifying plants based on the number and positions of their stamens. He also pioneered the system of binomial nomenclature still used in the twenty-first century to identify individual plants. © STAPLETON COLLECTION/CORBIS

Additional topics

Science EncyclopediaScience & Philosophy: Mysticism to Nicotinamide adenine dinucleotide