3 minute read

Nuclear Weapons

Effects Of Nuclear Weapons

Nuclear weapons produce two important effects that are also produced by conventional, chemical explosives: they release heat and generate shock waves, pressure fronts of compressed air that smash objects in their paths. The heat released in a nuclear explosion creates a sphere of burning, glowing gas that can range from hundreds of feet to miles in diameter, depending on the power of the bomb. This fireball emits a flash of heat that travels outward from the site of the explosion (ground zero), the area directly under the explosion. This heat can cause second degree burns to bare human flesh miles away from the blast site if the bomb is large enough. (Although this heat can start fires, it seems that much of the fire damage in Hiroshima and Nagasaki following the nuclear explosions resulted from damaged electrical, fuel, gas, and other systems following physical damage caused by the shock or blast wave that accompanied the explosion.)

The shock wave produced when a nuclear weapon explodes creates a front of moving air more powerful than any produced by a natural storm. Destructive winds follow the front of displaced air, causing more damage to objects in their path. Many nuclear weapons are designed to be detonated high above their targets to take advantage of this shock effect. The more powerful the bomb, the higher in the sky it will be detonated. The fission bombs dropped on Japan (Hiroshima, 13.5 kilotons; Nagasaki, 22 kilotons) exploded between 1,500 and 2,000 ft (458–610 m) above their targets. A bomb with the power of 10 megatons is capable of destroying most houses within a distance of more than 10 mi (16 km) from the blast site.

Unlike conventional explosives, nuclear devices can also release significant amounts of radioactivity and pulses of electromagnetic energy. Radioactivity is the release of fast particles and high-energy photons from unstable atomic nuclei. Besides the greater explosive power of nuclear weapons, radiation is the primary feature that most clearly distinguishes chemical from nuclear explosions. Radiation can kill outright at high doses and cause illnesses, including cancer, at lower doses. The initial burst of radiation during a nuclear explosion is made up of x rays, gamma rays, and neutrons. The energy of this radiation is so high that it can often penetrate buildings. Later, radioactive materials contaminate the explosion site and often enters the atmosphere where it can travel thousands of miles before falling back to earth. This source of radiation is called radioactive fallout. Radioactive fallout can harm living things for years following a nuclear explosion. Fission bombs and fission-fusion-fission bombs produce more fallout than hydrogen bombs because the fusion of hydrogen atoms generates less radioactive byproducts than does fission of uranium or plutonium.

Electromagnetic pulses (EMPs) are also produced by nuclear weapons that are exploded at high altitudes, and are caused by the interaction of radiation from the explosion with electrons in the atmosphere and with the Earth's magnetic field. EMPs are essentially powerful radio waves that can destroy many electronic circuits.

The effects of fires and destruction following a large-scale nuclear war might even change the climate of the planet. In 1983, a group of scientists including U.S. astronomer Carl Sagan (1934–1996) published the "nuclear winter" theory, which suggested that particles of smoke and dust produced by fires caused by many nuclear explosions would, for a time, block the Sun's rays from reaching the surface of Earth. This, in turn, would reduce temperatures and change wind patterns and ocean currents. These climatic changes, according to the theory, could destroy crops and lead to the death by famine of many more animals and humans than were killed outright by nuclear explosions. Some scientists have challenged these predictions, but others, including some United States government agencies, support them. On the other hand, there is no controversy about whether a large-scale nuclear war could kill hundreds of millions of people and imperil the future of modern civilization, even apart from nuclear winter effects.


Additional topics

Science EncyclopediaScience & Philosophy: Nicotinamide adenine dinucleotide phosphate (NADP) to Ockham's razorNuclear Weapons - Development Of Nuclear Weapons, How Nuclear Weapons Work, Effects Of Nuclear Weapons, Nuclear Weapons Today