3 minute read



The work of a generation of historians sensitive to the symmetrical study of technological success and failure suggests that animated debates concerning choice between competing technologies have been the rule, not the exception. In the case of the automobile—another technology assumed to be globally preeminent—early-twentieth-century battery-run and internal-combustion-powered vehicles competed hard in various local contexts against each other (as well as against those moved by steam pressure). Now a technical hope of the future, the electric car did not lose in the past because of an internal technical inferiority; the gasoline-driven internal combustion engine prevailed because of an abstracted over a socially situated conception of technical efficiency. Unsurprisingly, the term technology became widely used only after the early-twentieth-century rise of "technocracy," a movement that promoted an abstracted conception of technical superiority by seeking to replace the acknowledged subjectivity of politics by the assumed objectivity of engineering.

The technocracy movement was propelled by the establishment of Fordism, a mode of mass production of automobiles with internal combustion engines. The technical efficiency of the automobile assembly line of the factories of Henry Ford was unquestionable in the 1910s. Things changed in the following decade when competitors chose production flexibility over efficiency by challenging the Fordist reliance on a combination of increasingly specialized machines and degraded skills; rather than producing a more affordable car but one offered only in a single model—the infamous black Model T—Ford's competitors elected the option of producing a variety of car models.

Taylorism was the other side of Fordism because it started from changes in labor efficiency that were to match changes in machine efficiency. Interested in increasing the efficiency of low-skill work and then returning a portion of the extra value to be produced to the workers in the form of better wages, Frederick W. Taylor, through what became known as "scientific management," proposed a scheme for a decisive advance in industrialization regardless of the availability and the wills of skilled workers, by relying on the unskilled labor of destitute urbanite and/or peasant masses. Varying mixes of the Taylorist-Fordist combination appealed to societies as different as that of the Germany and the USSR of the interwar period. Organic components of Stalinism, Taylorism, and Fordism also puzzled the most critical spirits of interwar Europe, including Antonio Gramsci, the imprisoned leader of the Italian Communist Party. In the pursuit of a worker who ought to abandon all preindustrial attitudes that were incompatible with the uniformity expected by the Taylorist-Fordist mode of production, Gramsci saw the potential for moral and material improvement of the working class, which he considered prerequisite to its emancipation.

Ford was not the only one concerned with creating a massive demand for his product to match its mass supply by his factories. Samuel Insull—who had started as Edison's secretary before he controlled, through dubious financial schemes, an empire of electrical utilities—had clearly realized the need for around-the-clock demand for electricity to take advantage of mass-production-capacity installations. Whatever technology might have been, it has been shaped both in production and in consumption, by invention and in use. The study of the history of the experience of technology vis-à-vis consumption, such as in a First World household or a Third World farmstead, has managed a decisive blow for the commonplace assumption of technology's universalism. It has shown that technology's easy mix with time-honored ideologies such as sexism or racism has increased the household work of a First World woman and decreased the resources of a Third World habitant.

Unregulated overproduction across the whole of industry accumulated the forces that were unleashed with the 1929 stock market crash. Herbert Hoover, the engineer-president was replaced by the iron politics of Franklin D. Roosevelt. The state-driven civilian rural electrification of the 1930s, which matched demand to supply, the Manhattan Project, and the rest of the state-driven military-technological projects of World War II shaped the emergence of "technology policy" as a key issue for the post–World War II state. Success in what is now called technology policy has in fact been a prerequisite for the constitution of the modern state as such on both sides of the Atlantic. The end of the ancient régime in France and of the democracy of artisans, farmers, and merchants in the United States was marked by the state's pursuit of a technology for the mass manufacturing of guns with as uniform (or "interchangeable") parts as possible. The transfer of this technology to the rest of U.S. manufacturing over the course of the nineteenth century resulted in the so-called American system of manufactures, which took the millions visiting the world's fairs by surprise.

Additional topics

Science EncyclopediaScience & Philosophy: Swim bladder (air bladder) to ThalliumTechnology - Technocracy, Technological Determinism, Bibliography