3 minute read

Islamic Science

Twelfth To Mid-fifteenth Centuries



Substantial changes in the context of the sciences took place between the twelfth and the mid-fifteenth centuries. They resulted from the adoption of the madrasa (Muslim institution for higher education) as an appropriate means for achieving cultural, religious, legal, and social purposes by the Sunni Turkish and Kurdish dynasties of the Saljuqs, Zangids, Artuqids, and Ayyubids since the second half of the eleventh and during the twelfth century. Scholarly opinions about the place of the sciences and philosophy in this institution vary profoundly. Some such as George Makdisi argue that they were denied access to institutionalized teaching and could be at best taught privately, occasionally having even to go into hiding. Others, for example Seyyed Hossein Nasr, point to the integration of logic, philosophy, astronomy, arithmetic, and geometry into the Persian madrasas. They see this process as limited to Persia. J. Lennart Berggren takes a middle position by stressing that certain parts of the mathematical sciences, such as elementary arithmetic and algebra, became fully integrated into the legal teaching. Several others have shown that in contrast to the belief in a religiously motivated marginalization of the sciences, new professional and disciplinary settings emerged that led to a flourishing high theory (planetary models), the invention and construction of new scientific instruments (new types of astrolabes, quadrants, and compounds with compasses), and a vigorous practice of solving astronomical problems central for Muslim religious ritual.



The new profession of the muwaqqit (timekeeper) focused on the mathematical and astronomical treatment of problems of religious ritual and on instruments. The muwaqqits were attached to mosques and madrasas mainly in Syria, Egypt, the Maghrib, Andalusia, and under the Ottomans also in Anatolia and the Balkans. The new disciplinary realm, that of the rational sciences, combined certain religious studies with some of the ancient sciences. In a gradual process, parts of logic, epistemology, metaphysics, physics, astronomy, and geometry were assimilated to kalam (rational theology), usul al-din (the fundaments of religion), and to a lesser extent to usul al-fiqh (the fundaments of law). The assimilation took place either by integrating these elements into the religious disciplines themselves or by teaching them together by the same professor to the same group of students.

The search for new planetary models that superseded those of Ptolemy and were the basis for the work of Nicolaus Copernicus (1473–1543) was almost exclusively sponsored through princely patronage until the thirteenth and early fourteenth centuries, when it experienced a new period of innovation through the works of Mu'ayyad al-Din al-'Urdi (d. 1260), Muhyi l-Din al-Maghribi (d. c. 1290), Nasir al-Din al-Tusi (1201–1274), and Qutb al-Din al-Shirazi (1236–1311). The Mongol adaptation of the madrasa to the needs of an itinerant court and the spreading inclination among religious scholars of southern Mesopotamia and western Persia to include in their education the study of philosophy and the mathematical sciences apparently led to the later integration of planetary models in the courses taught at Persian madrasas and in textbooks on kalam. As a result, major religious scholars from the fourteenth century onward also wrote on 'ilm al-hay'a and contributed to improving the models.

As in the case of the muwaqqit, the discussions on astronomical theory did not spread over the entire Islamic world. They took place mainly in Persia between the thirteenth and the early sixteenth centuries with some extension to Anatolia, Syria, central Asia, and India, where it lasted occasionally until the eighteenth century. But parts of this theory, for instance the so-called Tusi-couple, spread to Byzantium and Andalusia, and among Jewish circles of southern France and Italy. The submission of large parts of Asia under Mongol rule in the second half of the thirteenth and the first third of the fourteenth century ensured a vivacious exchange of scientific texts, instruments, and methods between the Islamic east and China. Texts on medicine, agriculture, and astronomy were translated either into Persian or into Chinese and commented on in Uighur and Tibetan. Chinese tables based on Islamic ancestors were discussed and modified in Korea.

Additional topics

Science EncyclopediaScience & Philosophy: Intuitionist logic to KabbalahIslamic Science - Mid-eighth To The Eleventh Centuries, Twelfth To Mid-fifteenth Centuries, Mid-fifteenth To Nineteenth Centuries