4 minute read

Communication in Middle East and Abroad

Medieval Translation Movements



The great translation movement that began in ninth-century Baghdad displays an overall pattern quite similar to that of the westward movement of technology from China, India, and Persia. The movement began through an internal mechanism: the Sassanid kings of Persia (224–651 C.E.), whose mantle of authority and legitimation the Arab Abbasid caliphs (750–1256 C.E.) sought, had maintained a palace library and manuscript copying office whose task was to carry out an ideological precept of the Sassanid state, which was that Persian and other ancient lore should be preserved in a central place. One of Persian kingship's claims to legitimation was that it was the guardian of knowledge. Under Arab rule, this palace library, with the same task, was known as the Dar al-Hikma (House of Wisdom). The Abbasids clothed this preexisting rationale with a geopolitical cloak: its message to both the Persian elites to the East of Baghdad and the Greek-speaking masses to the West was that the caliphate was the only legitimate heir to their respective cultural traditions. Thus did the entire extant corpus of Greek wisdom come to be translated into Arabic; to it were added, in particular, Persian and Indian components. Among the latter was a family of celestial charts that, when coupled with Ptolemy's theoretical astronomy, laid the basis for medieval Arab, and later Latin, astronomy, which, along with Indian numerals (including the zero) and the place-value system, formed the core of the medieval scientific achievement.



This scientific movement, based at first on translation and the retrieval of ancient lore, was an epiphenomenon of the ease of communication within the Eurasian landmass, facilitated by the political unity provided by the Islamic empire of the early Middle Ages. Travel for the sake of knowledge (Arabic, alrihla fi-talab al-'ilm) was characteristic of both Muslim and Jewish scholars, who traveled from one end of the Islamic world to the other in order to study the religious and secular sciences with famous teachers.

The assimilation of knowledge originating in cultures different from that of the core society always involves not only a range of linguistic problems associated with translation but also culturally rooted conceptual problems. Among all the peoples involved in medieval "translation movements" (Greek and Persian into Arabic, Arabic into Latin, Hebrew, Chinese, and European vernacular languages), there was a fairly standard debate about the relative merits of literal versus free translation (Latin, ad verbum and ad sensum, respectively). In some cases, defective texts bearing alien conceptions were passed along in the most literal fashion possible in order to preserve what sense there was. Such was the case of Aristotle's Posterior Analytics (350 B.C.E.), which survived in the form of student notes and which, having passed through an Arabic translation, became one of the keystones of scientific method in both medieval Islam and Europe. The Arabs also had conceptual difficulties with Aristotle's Poetics (350 B.C.E.), much of which presumes familiarity with drama, because there was no such literary tradition in their culture. In the case of alchemy, a series of translation errors that confused the color gold with the metal, dating to classical antiquity, led to an increasingly esoteric body of knowledge that, at each successive step, compounded the error.

Once a core of science existed in Arabic, it was then diffused again in both directions from Islamic civilization through the Eurasian plain, eastward to China and westward, through Sicily and Spain, to Latin Europe. Arab astronomy (and its practical side, astrology) reached Latin Europe in the early twelfth century, several decades after the Christian conquest of Toledo (1085), and reached China about a century later. The Chinese founded observatories and staffed them with Muslim personnel. Interest in both East and West was preeminently practical: astronomical calculation of calendars and the practice of "political astrology," the assessment of favorable times for military, political, and economic activities.

When one considers the relative importance of oral versus written culture in the communication of knowledge, perhaps one can profitably begin with the case of mathematics (which has the advantage of reducing ideological issues to a minimum). Even after the reception of Indian calculation (hisab al-hind) in the Arabic-speaking world, calculation (among merchants, for example) continued to utilize hand signals. If the intermediate steps were written, a dust board (the original sense of abacus) was used, then erased, and the results were often written down in alphanumeric form. So in mathematics and commerce there was always a range of media available and, in practice, they were mixed according to various utilitarian principles. Similar mixes of oral and written culture were probably equally useful in other areas of human experience.

The game of chess originated in India, and was then cultivated in Persia, the immediate sources of the Arabic game al-Shatranj. It followed the same path of diffusion westward as did Indian astronomy and mathematics and had the same audience, namely educated people attracted to mathematics and logic. The first technical treatises on chess in Arabic appeared in the ninth century. There was also a popular variant of the game that was astronomical in nature, played on a round board divided into the twelve houses of the zodiac. Part of the reason that chess was popular among Muslims and Jews is that gambling was forbidden by both religions, an example of a cultural stimulus to the adoption of an innovation.

Additional topics

Science EncyclopediaScience & Philosophy: Cluster compound to ConcupiscenceCommunication in Middle East and Abroad - The Ancient Near East, Medieval Communication And Transportation, Medieval Translation Movements, Paper And Literacy