Telescope
Adaptive Optics
In 1991, the United States government declassified adaptive optics systems (systems that remove atmospheric effects), which had been developed under the Strategic Defense Initiative for ensuring that a laser beam could penetrate the atmosphere without significant distortion. The principle behind adaptive optical telescope systems is illustrated in Figure 3..
A laser beam is transmitted from the telescope into a layer of mesospheric sodium at 56-62 mi (90-100 km) altitude. The laser beam is resonantly backscattered from the volume of excited sodium atoms and acts as a guide-star whose position and shape are well defined except for the atmospheric distortion. The light from the guide-star is collected by the telescope and a wavefront sensor determines the distortion caused by the atmosphere. This information is then fed back to a deformable mirror, or an array of many small mirrors, which compensates for the distortion. As a result, stars that are located close to the guide-star come into a focus, which is many times better than can be achieved without compensation. Telescopes have operated at the theoretical resolution limit for infrared wavelengths and have shown an improvement in the visible region of more than ten times. Atmospheric distortions are constantly changing, so the deformable mirror has to be updated every five milliseconds, which is easily achieved with modern computer technology.
Additional topics
Science EncyclopediaScience & Philosophy: Swim bladder (air bladder) to ThalliumTelescope - Resolution, Overcoming Resolution Limitations, Space Telescopes, Adaptive Optics, Recording Telescope Data, Modern Optical Telescopes - Operation of a telescope, Types of telescope, Alternative wavelengths