Photochemistry
Photochemistry Induced By Visible And Ultraviolet Light
Light that can break molecular bonds is most effective at inducing photochemical reactions. The energy required to break a molecular bond ranges from approximately 150 kiloJoules per mole to nearly 1000 kJ/mol, depending on the bond. Visible light, having wavelengths ranging from 400-700 nanometers, corresponds to energies ranging from approximately 300-170 kJ/mol, respectively. Note that this is enough energy to dissociate relatively weak bonds such as the single oxygen (O-O) bond in hydrogen peroxide (HOOH), which is why hydrogen peroxide must be stored in a light-proof bottle.
Ultraviolet light, having wavelengths ranging from 200-400 nm, corresponds to higher energies ranging from approximately 600-300 kJ/mol, respectively. Ultraviolet light can dissociate relatively strong bonds such as the double oxygen (O=O) bond in molecular oxygen (O2) and the double C=O bond in carbon dioxide (CO2); ultraviolet light can also remove chlorine atoms from compounds such as chloromethane (CH3Cl). The ability of ultraviolet light to dissociate these molecules is an important aspect of the stability—and destruction—of ozone molecules in the upper atmosphere.
Additional topics
- Photochemistry - Reaction Pathways
- Photochemistry - The Basic Laws Of Photochemistry
- Other Free Encyclopedias
Science EncyclopediaScience & Philosophy: Philosophy of Mind - Early Ideas to Planck lengthPhotochemistry - The Basic Laws Of Photochemistry, Photochemistry Induced By Visible And Ultraviolet Light, Reaction Pathways, Dissociation - Ionization, Isomerization