4 minute read

Petroleum

Sources Of Petroleum



Petroleum is typically found beneath the surface of the earth in accumulations known as fields. Fields can contain oil, gas, tar, water, and other substances, but oil, gas, and water are the most common. In order for a field to form, there must be some sort of structure to trap the petroleum, a seal on the trap that prohibits leakage of the petroleum, and a reservoir rock that has adequate pore space, or void space, to hold the petroleum. To find these features together in an area in which petroleum has been generated by chemical reactions affecting organic remains requires many coincidences of timing of natural processes.



Petroleum generation occurs over long periods of time—millions of years. In order for petroleum generation to occur, organic matter such as dead plants or animals must accumulate in large quantities. The organic matter can be deposited along with sediments and later buried as more sediments accumulate on top. The sediments and organic material that accumulate are called source rock. After burial, chemical activity in the absence of oxygen allows the organic material in the source rock to change into petroleum without the organic matter simply rotting. A good petroleum source rock is a sedimentary rock such as shale or limestone that contains between 1% and 5% organic carbon. Rich source The 799–mi (1,286-km) long Trans-Alaska Pipeline is capable of transporting over 1.2 million barrels of oil per day. Photograph. JLM Visuals. Reproduced by permission. rocks occur in many environments, including lakes, deep areas of the seas and oceans, and swamps. The source rocks must be buried deep enough below the surface of the earth to heat up the organic material, but not so deep that the rocks metamorphose or that the organic material changes to graphite or materials other than hydrocarbons. Temperatures less than 302°F (150°C) are typical for petroleum generation.

Once a source rock generates and expels petroleum, the petroleum migrates from the source rock to a rock that can store the petroleum. A rock capable of storing petroleum in its pore spaces, the void spaces between the grains of sediment in a rock, is known as a reservoir rock. Rocks that have sufficient pore space through which petroleum can move include sandstone, limestone, and rocks that have many fractures. A good reservoir rock might have pore space that exceeds 30% of the rock volume. Poor quality reservoir rocks have less than 10% void space capable of storing petroleum. Rocks that lack pore space tend to lack permeability, the property of rock that allows fluid to pass through the pore spaces of the rock. With very few pores, it is not likely that the pores are connected and less likely that fluid will flow through the rock than in a rock with larger or more abundant pore spaces. Highly porous rocks tend to have better permeability because the greater number of pores and larger pore sizes tend to allow fluids to move through the reservoir more easily. The property of permeability is critical to producing petroleum: If fluids can not migrate through a reservoir rock to a petroleum production well, the well will not produce much petroleum and the money spent to drill the well has been wasted.

In order for a reservoir to contain petroleum, the reservoir must be shaped and sealed like a container. Good petroleum reservoirs are sealed by a less porous and permeable rock known as a seal or cap rock. The seal prevents the petroleum from migrating further. Rocks like shale and salt provide excellent seals for reservoir rocks because they do not allow fluids to pass through them easily. Seal-forming rocks tend to be made of small particles of sediment that fit closely together so that pore spaces are small and poorly connected. The permeability of a seal must be virtually zero in order to retain petroleum in a reservoir rock for millions to hundreds of millions of years, the time span between formation of petroleum to the discovery and production of many petroleum fields. Likewise, the seal must not be subject to forces within the earth that might cause fractures or other breaks in the seal to form.

Reservoir rocks and seals work together to form a trap for petroleum. Typical traps for petroleum include hills shaped like upside-down bowls below the surface of the earth, known as anticlines, or traps formed by faults. Abrupt changes in rock type can form good traps, such as sandstone deposits next to shale deposits, especially if a sand deposit is encased in a rock that is sufficiently rich in organic matter to act as a petroleum source and endowed with the properties of a good seal.

An important aspect of the formation of petroleum accumulations is timing. The reservoir must have been deposited prior to petroleum migrating from the source rock to the reservoir rock. The seal and trap must have been developed prior to petroleum accumulating in the reservoir, or else the petroleum would have migrated farther. The source rock must have been exposed to the appropriate temperature and pressure conditions over long periods of time to change the organic matter to petroleum. The necessary coincidence of several conditions is difficult to achieve in nature.


Additional topics

Science EncyclopediaScience & Philosophy: Pebi- to History of Philosophy - IndifferentismPetroleum - Types Of Petroleum, Sources Of Petroleum, Petroleum Exploration And Production, Petroleum Reserves, Current Research