Hyperbola
Uses
Hyperbolas have many uses, both mathematical and practical. The hyperbola y = 1/x is sometimes used in the definition of the natural logarithm. In Figure 6 the logarithm of a number n is represented by the shaded area, that is, by the area bounded by the x-axis, the line x = 1, the line x = n, and the hyperbola. Of course one needs calculus to compute this area, but there are techniques for doing so.
The coordinates of the point (x,y) on the hyperbola x2- y2 = 1 represent the hyperbolic cosine and hyperbolic sine functions. These functions bear the same relationship to this particular hyperbola that the ordinary cosine and sine functions bear to a unit circle:
Unlike ordinary sines and cosines, the values of the hyperbolic functions can be represented with simple exponential functions, as shown above. That these representations work can be checked by substituting them in the equation of the hyperbola. The parameter u is also related to the hyperbolas. It is twice the shaded area in Figure 7.
The definition PF1 - PF2 = ± C, of a hyperbola is used directly in the LORAN navigational system. A ship at P receives simultaneous pulsed radio signals from stations
Figure 8.
Resources
Books
Gullberg, Jan, and Peter Hilton. Mathematics: From the Birth of Numbers. W.W. Norton & Company, 1997.
Hahn, Liang-shin. Complex Numbers and Geometry. 2nd ed. The Mathematical Association of America, 1996.
Hilbert, D., and S. Cohn-Vossen. Geometry and the Imagination. New York: Chelsea Publishing Co. 1952.
Larson, Ron. Calculus With Analytic Geometry. Boston: Houghton Mifflin College, 2002.
J. Paul Moulton
Additional topics
Science EncyclopediaScience & Philosophy: Hydrazones to IncompatibilityHyperbola - Other Definitions, Features, Drawing Hyperbolas, Uses