2 minute read

Calculator

Modern Advances



At the end of 1947, the transistor was invented, eventually making the vacuum tube obsolete. This tiny creation, composed of semiconductors, were much faster and less energy consumptive than the tubes. Problems arose with the connections between the components with size, speed, and reliability as more complex machines needed more complex circuitry which in turn required more components soldered to more boards (the actual board to which the pieces were attached). The next breakthrough came with the invention of the integrated circuit (IC) in 1959 by Texas Instruments (TI) and Fairchild (a semiconductor manufacturing company). The integrated-circuit is akin to a solid mass of transistors, resistors, and capacitors. Again, the speed of computation increased (since the resistance in the circuit was reduced) and the energy required by the machine was decreased. Finally, a computer could fit on a spaceship (they were part of the Apollo computer) or missile. In 1959, an IC cost over $1,000 but by 1965 they were under $10.



Ted Hoff, an electrical engineer for Intel conceived of a radical new concept-the microprocessor. This incorporated the circuitry of the integrated circuit and the programs used in a computer onto a single chip, or piece of silicon. This model of this microprocessor was finished in 1970. The idea of a disposable piece of a calculator was revolutionary. Its compactness and speed changed the face of the computing industry.

The creation of ICs allowed calculators to become much faster and smaller. By the 1960s, they were hand held and affordable. By the late 1980s, calculators were found on watches. However, once again engineers are being blocked by the size factor. The limits are now the size of the chip which in turn limits the speed and programmability of the calculator, or computer.

Resources

Books

Macaulay, David. The New Way Things Work. Boston: Houghton Mifflin Company, 1998.

Palfreman, Jon, and Doron Swade. The Dream Machine: Exploring the Computer Age. London: BBC Books, 1991.

Williams, Michael R. A History of Computing Technology. Englewood Cliffs, New Jersey: Prentice-Hall, 1985.


Mara W. Cohen

KEY TERMS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binary

—The base 2 system of counting using two digits: 0 and 1. Each unit is a2 to the n+1 power. For example, the first unit is 20 or 1; the second 21 or 2; the third 22 or 4; the forth 23 or 8; and so forth. Thus 221 in binary is 11011101 or 1 hundreds twenty-eight (27), 1 sixty-four (26), no thirty-twos (25), 1 sixteen (24), 1 eight (23), 1 four (22), no twos (21), and 1 one (20). This unit of counting was invented by Gottfried Leibniz in the 1600s.

Decimal

—The base 10 system of counting using ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Each unit is 10 to the n+1 power. For example, the first unit is 100 or 1; the second 101 or 10; the third 102 or 100; and so forth. Thus, 221 is 2 hundreds (102), 2 tens (101), and 1 one (100).

Punch cards

—Made of a heavy cardboard, these rectangular cards have holes punched in them. Each hole is placed in a designated area which the computer then translates into a binary code. A series of such punched cards contain a sequence of events, or a program. The first punch cards were invented by Jacquard, a weaver, who wanted to automate the creation of patterns in his fabric. Thus, his loom was the first machine to use these cards.

Additional topics

Science EncyclopediaScience & Philosophy: Calcium Sulfate to Categorical imperativeCalculator - The First Calculators, Early Calculators, Difference Engine, Patents, Electronic Predecessor To Computer, Inside Calculators