6 minute read

Scientific Revolution

Historiographical Developments



The concept of the Scientific Revolution was introduced as part of a major historiographical overhaul that took place between the mid-1920s and the early 1950s. It was then meant to identify a period in European history, roughly between the second half of the sixteenth century and almost the full seventeenth century (that is, between Copernicus and Newton), when a unique, radical conceptual upheaval took place out of which modern science emerged essentially as we still know it. This view of a radical conceptual upheaval, first vaguely sensed in some earlier historiography, quickly began to be articulated in the budding field of the history of science in ways that turned the previously customary listing of one heroic scientific achievement after another into a careful reconstruction of the conceptual knots that those who brought about the Scientific Revolution actually had to disentangle.



A master narrative.

Within this emerging concept-focused mode of history writing came a variety of path-breaking narratives minimally sharing a focus on how the once self-evident conception of our Earth at the center of the universe gave way to the core of the modern worldview of the Earth and the other planets placed in a solar system occupying a tiny portion of an infinite universe. What brought about this fundamental conceptual shift to a non-Earth-centered universe, as well as new conceptions of motion and of the creation of space as a void? Historians held that a major contributor was the quickly expanding process of the mathematization of nature, that is, the subjection of increasing ranges of empirical phenomena to mathematical treatment in ways generally suitable to experimental testing. Several people were seen as key figures in this process. Copernicus (1473–1543) computed, down to the required detail, planetary trajectories in a Sun-centered setting. Johannes Kepler (1571–1630) turned Copernicus's formulation into a previously inconceivable "celestial physics," and this led to his discovery of the planets' elliptical paths. Galileo (1564–1642) mathematized a significant terrestrial, as opposed to celestial, phenomenon—falling and projected bodies—in an effort to counter major objections to Copernicus's formulation. René Descartes (1596–1650) mathematically conceived space and particle interactions in space. Sir Isaac Newton (1642–1727) capped these developments by uniting terrestrial and celestial physics in his mathematically exact, empirically supported conception of universal gravitation. This is not to say that historians equated these scientists and their principal accomplishments with the Scientific Revolution. Still, for decades historians were inclined to treat most other noteworthy modern scientific attainments—such as William Harvey's (1578–1657) discovery of the circulation of the blood and others' refinements in chemical analysis—as somehow tangential to the main course of development.

New historiographical perspectives.

Starting in the 1960s, historians introduced a range of perspectives to widen (or in some cases to replace) the historiographical master narrative just outlined and some of the insights gained thereby. In fairly random (certainly not chronological) order, these perspectives are listed below.

Historians have ceased identifying the present classification of scientific disciplines with their seventeenth century counterparts. They are replacing it with a still increasing awareness that what we now call "mechanics," for instance, scarcely had a counterpart in the early seventeenth century—so different, and differently aligned, was the intellectual context in which problems of motion used to be considered from the ancient Greeks onward. Some historians are even beginning to recognize that what we now call "science" developed at the time in several different modes, each with a distinct intellectual tradition, knowledge structure, mode of approach, and professional identity.

Historians are including in their narratives research subjects and/or people previously omitted or marginalized. Rediscovered research areas include ranges of (at the time) nonmathematical, chiefly descriptive subjects, like magnetism or illness, or subjects neglected because they are scarcely practiced anymore today, like musical science, and/or are held under grave suspicion, like alchemy. Rediscovered contributors, though important, fall below the first rank. Examples are hosts of able Jesuit experimenters, numerous practitioners on the European Continent, as well as a small number of women (e.g., Margaret, duchess of Newcastle, who developed a speculative Cartesian yet creative theory of moving particles, or Elisabetha Hevelius, coworker with her better known astronomer-husband).

Perhaps most important of all, historians of science have strived to put the history of scientific ideas in institutional and other sociocultural contexts. Though history writing in the vein of "This thinker brought about this particular conceptual breakthrough; then that thinker that one" is still valuable for revealing the complex way in which conceptual innovation and continuity are intertwined, historians now feel that properly understanding scientific accomplishment requires a deep awareness of how it was situated in time and place. In this way historians have revealed, for example, the at times highly consequential dependence of practitioners on Europe's patronage market, and the link between the controversy over the validity of instrument-aided experimentation, as articulated in Robert Boyle's (1627–1691) and Thomas Hobbes's (1588–1679) early 1660s dispute over the void, and the politics of the Stuart Restoration. As a result, historians have increasingly focused on the local particularity, over the universal validity, of the most seminal developments of the Scientific Revolution. Among genuine accomplishments of this contextualist approach must be counted a heightened concern for the dayto-day practice of experimental research and for the trustworthiness of results thus attained, a heightened sense that the course of discovery is at times fortuitous, and an awareness that discoverers had other motives than sheer backwardness and/or superstition. In the past contextualization has at times focused on this or that piece of pertinent microhistory. We face a wide-open opportunity to extend contextualization by taking the world-historical peculiarities of Europe as the context in which to make proper sense of large-scale scientific developments. Indeed, most writing on the history of science has been confined, if not just to the English speaking world, then at least to the Western tradition held to run from the Greeks, via the purported holding action of the Arabs, to medieval then Renaissance Europe, then to postrevolutionary science as it unfolded principally in the Western heartlands. Despite some inspiring, pioneering efforts in the 1930s to 1950s, a cross-culturally comparative perspective on why modern science emerged where and when it did is still in its infancy.

Abandonment or new syntheses?

The net effect of this plurality of novel viewpoints has been the perhaps predictable one of resignation. What numerous historians of science have given up is not the ongoing production of partly novel interpretations of events in the history of seventeenth-century science, but the very idea that, deeply below the surface of singular events, something identifiable holds so complex an event as the Scientific Revolution together. True, we can no longer accept the once enlightening yet too one-sided formula "Scientific Revolution mathematization of nature." But the message that historians' resignation imparts to nonscholars is that one of the most decisive events in world history, one of the prime motors of our modern world, was due to little more than chance. We have ready to hand a great deal of material and hosts of penetrating yet partial interpretations to answer the question of how modern science emerged in seventeenth-century Europe, rather than in one of the other great pre-modern civilizations at that or some earlier time. Yet there has been no serious effort to come to grips with the question how modern science emerged in seventeenth-century Europe. Below is an inevitably idiosyncratic, highly schematic example of how we might grapple with the question.

Additional topics

Science EncyclopediaScience & Philosophy: Jean-Paul Sartre Biography to Seminiferous tubulesScientific Revolution - Historiographical Developments, A Tentative, Synthetic Overview, References