3 minute read

Nature

Nature During The Scientific Revolution



Facilitated in part by advances in instrumentation, such as the telescope and microscope, the scientific revolution brought paradigmatic change to the idea of nature. When Galileo Galilei (1564–1642) observed moons orbiting Jupiter on a predictable schedule, the consequences were enormous. Earth could no longer be conceived as the center of the cosmos, as the focal point of a godly creation. Bacteria were first observed by the Dutch naturalist Anton van Leeuwenhoek (1632–1723) in 1683 (although the science of bacteriology had not yet arrived). As with Galileo, so with Leeuwenhoek: the apparent reality of nature visible to the naked eye was not what it seemed.



Changes in instrumentation were accompanied by changes in the powers of mathematical analysis. Working independently, Gottfried Wilhelm von Leibniz (1646–1716) and Sir Isaac Newton (1642–1727) developed what is now called the calculus. The move into conceptual abstraction that began with the Greeks was radically transformed by such mathematics. The scientific idea of nature was more and more represented in terms of equations and laws, devoid of so-called secondary qualities such as color and sound. There was an increasing commitment to Parmenidean tendencies—that is, the reduction of nature to permanence through mathematically described mechanical relations. The hallmark of rationality thus continued in the tradition of Parmenidean One—nature as an unchanging and therefore totally knowable singularity—while admitting to diverse mathematical characterization of natural phenomena.

The scientific revolution is often thought of as culminating in the work of Newton and the view of nature according to what is now termed "classical physics." But Newton is best understood as both an original thinker and a synthesizer. The work of three other thinkers is indicative of his precursors.

The first of these thinkers was Francis Bacon (1561–1626), aptly characterized as the man who saw through time because he straddled the medieval and modern ages. A practicing scientist, his scientific discoveries are less significant than his radical new ideas concerning nature itself. Science, he realized, was power—power over the natural world. And that power could lead human beings to a second world fashioned according to their wants and desires. Much of the utopian character of our own time, the belief that through the advance of theoretical knowledge and its technological application all problems might be solved, was first articulated by Bacon. His arguments effectively became a legitimating rationale for societal support of the natural sciences. While our rationales are primarily economic, his were ethical. He addressed the ancient problem of the fall into sin, which effectively sundered godly relations between humankind and nature. Toil and suffering, the ruined earth, affliction with drought and storm, insects and disease, were the consequences of the Fall. On the Baconian view a New Jerusalem could be had through the power of science to set nature right again, returning humans to an Edenic condition. Contemporary studies, including those based in critical, feminist theory, argue that the Baconian view of nature reflected an intensely hierarchical and patriarchal society. "Man" (meaning, the male members of the human species) would wrest scientific knowledge from an unwilling and unruly natural world, and through such knowledge gain power over "her."

The second was Galileo, an Italian physicist and astronomer famous for his encounters with the Inquisition, whose work in physics fundamentally undercut Aristotelian physics. Building on the theoretical work of Nicolaus Copernicus (1473–1543), who overturned geocentrism, Johannes Kepler (1571–1630), who first theorized the laws of planetary motion and the sun's influence on planetary orbits, and Tycho Brahe (1546–1601), who had achieved unparalleled accuracy in measuring the motions of the heavens, Galileo brought a new mathematical precision to the description of planetary motion (ironically, believing wrongly that the motion was circular rather than elliptical) and to falling material objects. Through his many experiments and observations, Galileo realized that there was but one kind of motion in nature, whether celestial or terrestrial, not two as the Greeks had believed.

Third, the work of the Frenchman René Descartes (1596–1650) had a profoundly important influence on physics. Descartes invented analytical geometry, a technique that allowed the precise description of the trajectories of material bodies in motion—later refined by Newton. His further work on methodology (the method of analysis) was likewise crucial. He argued that the way to understand complex physical phenomena was to reduce them to simpler components until reaching the level of irreducibility. Finally, Descartes argued that the new science of physics, built on mathematical description and prediction, would make humankind the master and possessor of nature.

Additional topics

Science EncyclopediaScience & Philosophy: Mysticism to Nicotinamide adenine dinucleotideNature - Nature Before Literacy, Nature In Antiquity, Pre-socratic Ideas Of Nature, Nature In Greek Rationalism